

Role of Fuels and Vehicle Technologies in achieving sustainable transport

Subash Dhar UNEP DTU Partnership

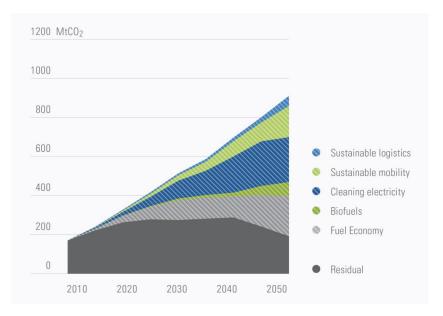
Expert Group Meeting on "Special Needs and Challenges in Developing Countries for Achieving Sustainable Transport"

New York

May 10-11, 2016

Challenges for Sustainable Development

- Mobility & Accessibility (SDG 4.2 & 11.2)
- Mobility Demand is low
- Motorisation is low


Country	Trip Rate	Trip Length	Total Travel
		(km)	Time (min)
Denmark	2.90	13.60	57.10
UK	2.66	11.71	59.34
US	3.79	16.20	60.00
India	1.36	5.07	-

Source: Dhar, Pathak & Shukla, 2015 "Promoting Low Carbon Transport in India"

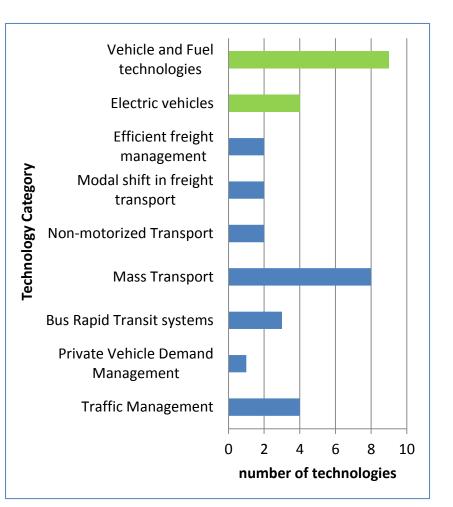
- Air Pollution (SDG 3.9)
- 100 most polluted cities ?
- Impacts
 - 3.7 million deaths globally

Challenges for Climate

- Climate Change (SDG 13)
 - 4 GT/yr by 2030 (IEA, 2015)
 - Co-benefits
- Aligning Sustainable Development and Climate Goals

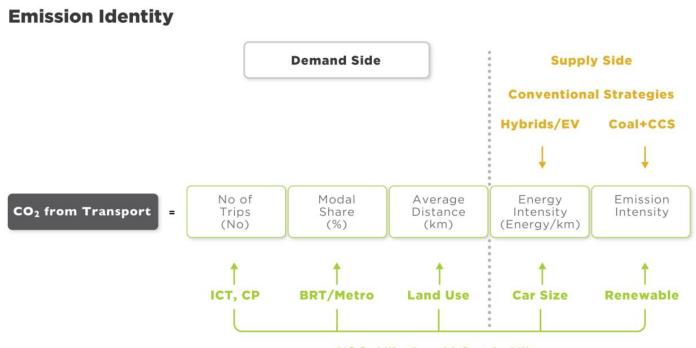
Source : Dhar & Shukla, 2015. <u>"Promoting Low Carbon Transport in India"</u>

Mitigation Wedges for Transport: India



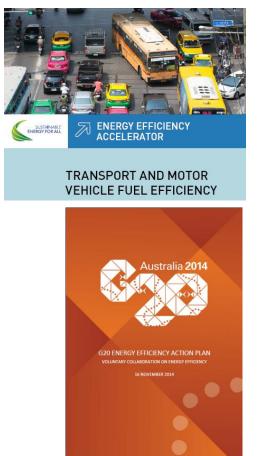
Technology Needs for Transport

- TNA Countries


 40% prioritised transport

 Vehicle & Fuel Technologies
 - Alternative fuels
 - Fuel Efficient Vehicles -LDV/HDV
 - Natural Gas Vehicles
 - Hybrid Vehicles (PHEV & HEV)
 - Electric Vehicles (EV)
 - etc

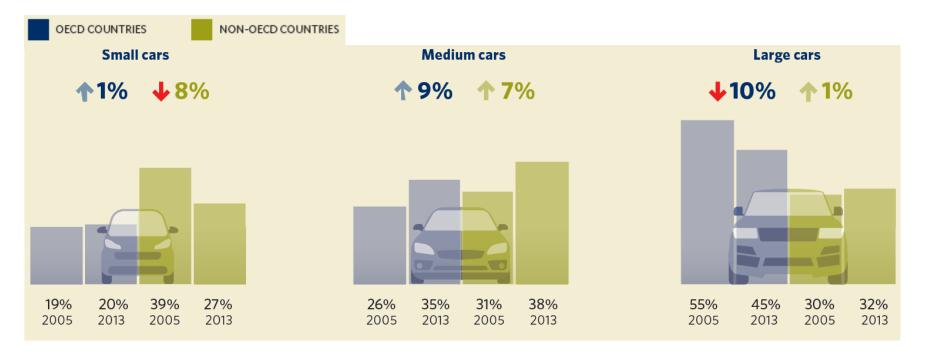
Kaya Framework



2°C Stabilization with Sustainability

Global Fuel Economy Initiative

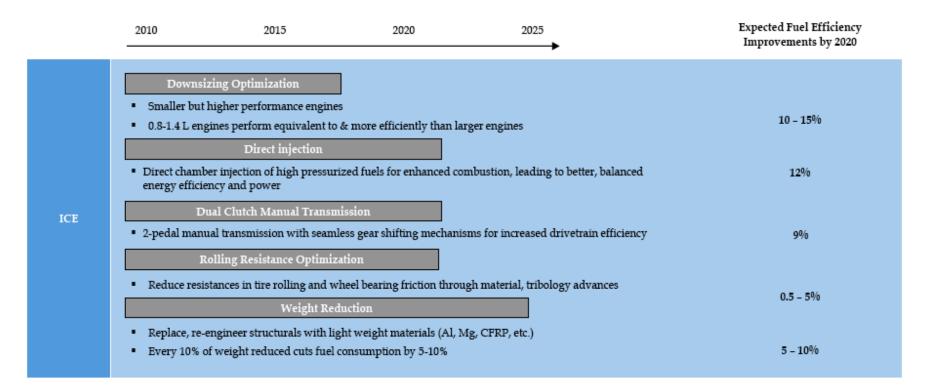
		2005	2008	20	11	2013	2030
OECD	average fuel economy (Lge/100km)	8.6	7.9	7.	.3	6.9	
	annual improvement rate (% per year)	-2.7%	-2.7% -2.6% -2.6%				
Non-	average fuel economy (Lge/100km)	7.3	7.4	2.6% 7.	.3	7.2	
OECD average annua	annual improvement rate (% per year)	0.5% -0.4% -0.9% -0.2%					
Global	average fuel economy (Lge/100km)	8.3	7.7	7.	.3	7.1	
	annual improvement rate (% per year)	-2.3% -1.9% -1.8% - 2.0%					
0751	average fuel economy (Lge/100km)	8.3					4.2
GFEI target	required annual 2005 base year improvement rate	-2.7%					
	(% per year) 2014 base year	-3.1%					



Vehicle Size Trends

New Registered Vehicles

Source: GFEI, 2016, Fuel State of the World, 2016



Drive Train Technologies

- Internal Combustion Engine (ICE)
 - Spark Ignition (Petrol)
 - Compression Ignition (Diesel)
- Alternative Drive Train Technologies
 - Battery and Electric Motor Vehicles
 - Hybrid
 - Fuel Cells
 - Micro turbines
 - Catenary electric motors (Tram / Metro)

DTU

Potentional Improvement in ICE

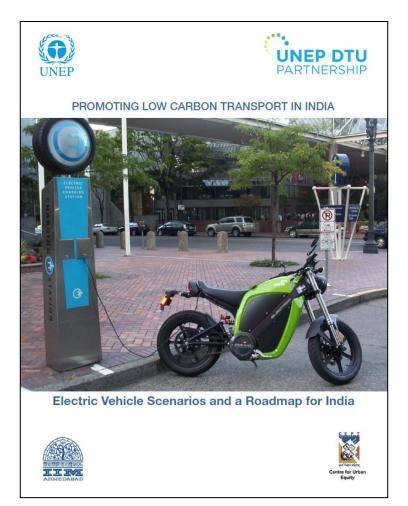
Source: Argonne National Laboratory, Automotive OEM press releases, Booz Allen Hamilton Technology Center, Booz & Company analysis

Alternative Drive Train Technologies

	Battery Electric vehicles	Hybrid Petrol	Plug in Hybrids	Fuel Cells
Drive Range	100 - 160 km for cars, 60 km for 2 wheelers	Same as petrol cars	20 - 50 km on battery alone, remaining using ICE	Same as petrol cars
Drive Train	Electric Motor	ICE, Electric Motor	ICE, Electric Motor	Fuel Cell, Electric Motor
Market Status	Dominant technology for 2 wheelers in China, EV 4 W emerging a strong contender	5 1		Few hundred globally
Energy consumption per pkm (w.r.t to a petrol engine) **	70-80% lower	11-22% lower	20-60% lower	55% - 70% lower
Typical Fuel	Electricity	Petrol	Electricity / Petrol /Diesel	Hydrogen

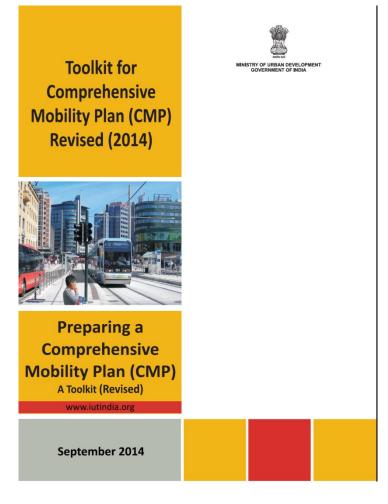
** IEA, 2009 Transport Energy & CO2; Kobayachi et. al., 2009 Energy efficiency technologies for road
11 vehicles. Energy Efficiency 2, 125–137; Plotkin et. al., 2009 Multi-path transportation futures study : vehicle
12 characterization and scenario analyses

Case Study - India EVs



Source: Shukla, et. al., 2014, *Electric Vehicles Scenarios and Roadmap for India* "Promoting Low Carbon Transport in India"

E Mobility Program


- 4 work streams:
 - 1- electric 2 & 3 wheelers
 - 2- electric bus fleets
 - 3- national policies for electric vehicles
 - 4- regional replication and outreach

Conclusions

- Fuels and Vehicles essential for sustainable transport
- Aligning climate and sustainable development goals can help in achieve more for both
- Alignment of National and local policies
- Policies are the key issue

